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Abstract—Ceritically ill patients in the intensive care unit (ICU)
require frequent blood glucose monitoring, yet resource and
operational constraints limit how often clinicians can obtain
point-of-care measurements. This creates a complex sequential
decision problem where each decision to invoke a blood glucose
measurement must weigh the operational cost of the test against
the clinical risk and uncertainty that arises from deferring the
test. In this project, we model glucose-monitoring allocation as
a Markov Decision Process (MDP) and develop offline reinforce-
ment learning (RL) and behavioral cloning approaches to learn
monitoring policies from historical ICU data. Using a curated
MIMIC-III dataset of glucose measurements and insulin events,
we construct a feature-based state representation that approxi-
mates the latent glycemic state under partial observability and
we define a clinically informed reward structure that captures
measurement costs and proxies for hyperglycemic risk [1]. We
evaluate heuristic, supervised, and Deep Q-Learning policies on
historical trajectories and show that learned policies produce
clinically sensible measurement strategies despite sparse and
noisy observations. Our results demonstrate that MDP-based
methods can support data-driven glucose-monitoring decisions
in ICU settings, though they fall short of clinically informed
policies.

I. INTRODUCTION

All critically ill patients admitted to the intensive care unit
(ICU) require regular blood glucose measurements, irrespec-
tive of a history of diabetes [2]. The physiological stress
of critical illness can cause significant fluctuations in blood
glucose levels that need to be monitored and managed. The
current standard of care for glucose testing in the ICU is
point-of-care blood glucose monitoring using a fingerprick or
arterial/venous blood sample [3]. Due to time and resource
constraints, clinicians must make strategic decisions on when
to administer glucose checks to their patients, prioritizing the
allocation of limited monitoring capacity to patients with the
greatest clinical need. These decisions have direct implications
for both patient safety and overall ICU workload efficiency. In
this work, we develop a framework for modeling this problem
as a sequential decision-making task using a cost-sensitive
Markov Decision Process (MDP) and evaluate algorithmic
policies that can support glucose-monitoring allocation under
realistic ICU constraints.
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A. Reinforcement Learning and Its Application to Blood Glu-
cose Management

Reinforcement learning (RL) provides a framework for
addressing sequential decision-making problems by learning
policies that optimize for long-term patient outcomes rather
than isolated or myopic decisions. Blood glucose management
is inherently a sequential decision-making problem: patient
glucose levels evolve over time, respond stochastically to
interventions, and must be managed under operational con-
straints and uncertainty. Hence, the paradigm of RL has been
increasingly applied to this problem space ( [2], [5], [6]).
An advantage of RL is that it allows clinicians to deliver
personalized care based on individual clinical needs rather than
relying on generalized guidelines.

B. Formulating Glucose Monitoring as a Markov Decision
Process

Markov Decision Processes (MDPs) provide the mathemat-
ical structure underlying reinforcement learning and consist of
four components: a state space, an action space, a transition
model, and a reward function. To capture the sequential
nature of ICU glucose-monitoring decisions, we formulate the
problem as an MDP. This framework allows us to model how
patient physiology evolves over time, how clinicians allocate
limited monitoring capacity, and how these choices influence
future clinical outcomes. Furthermore, using an MDP allows
for the optimization of patient outcomes under clinical uncer-
tainty.

The use of Markov Decision Processes (MDPs) to in-
form clinical decision-making in glucose management for
patients equipped with continuous glucose monitors (CGMs)
has gained increasing traction in recent years( [7]-[10]). For
our project, we generalize and adapt these methodologies to
a distinct clinical context: determining the optimal schedule
for intermittent blood glucose testing for critically ill patients
in the ICU. In contrast to previous studies, CGMs are not
commonly used in our chosen clinical setting due to accuracy
concerns. Instead, ICU clinicians must rely on point-of-care
glucose testing, which results in a sparsity of ground-truth
data. Furthermore, ICU clinicians have operational constraints
on how frequently they can monitor each patient, forcing



clinicians to strategically allocate their glucose monitoring ca-
pacity. The scarcity of ground-truth data plus operational limits
on patient monitoring presents unique modeling challenges not
addressed in prior work.

II. RELATED WORK

Decision-making under partial observability has been
widely studied in healthcare, where clinicians must act under
uncertain patient states and costly or infrequent measurements.
Partially Observable Markov Decision Processes (POMDPs)
have been used in chronic disease management, medical
screening, and personalized follow-up scheduling, highlighting
the central value-of-information (Vol) tradeoff between mea-
surement costs and improved belief accuracy [11], [12].

More closely related to our application, several works model
glucose management as a sequential decision problem. Prior
POMDP-based approaches have optimized glucose monitoring
frequency by treating each measurement as an information-
gathering action that reduces uncertainty in latent glucose
dynamics [13]. Other studies apply POMDP or reinforcement
learning (RL) methods to insulin dosing and closed-loop glu-
cose control under partial observability [14], [15]. Recent work
also highlights challenges arising from delayed and prolonged
insulin effects, motivating uncertainty-aware formalisms such
as PAE-POMDPs [16].

Methodologically, exact POMDP planning is computation-
ally intractable in large real-world domains, motivating ap-
proximate dynamic programming, online tree search, and
belief-state compression techniques [17], [18]. Practical soft-
ware toolkits further demonstrate that POMDPs can be de-
ployed for real clinical time-series data despite limited ob-
servability [19].

In contrast to full POMDP planning, our work adopts a
belief-approximation MDP approach: although the underlying
glucose dynamics are only partially observable, we construct
a compact feature-based state representation that summarizes
recent measurements, trends, and elapsed time, and treat this
representation as approximately Markov. Within this MDP
framework, we study the problem of when to measure glucose
under uncertainty and operational cost constraints. Unlike
prior work that focuses on optimizing treatment actions such
as insulin dosing, we focus specifically on the measurement
scheduling problem and the associated value-of-information
tradeoff in safety-critical ICU glucose management.

III. DATASET & FEATURES

We use the Curated Data for Describing Blood Glucose
Management in the Intensive Care Unit dataset from Phys-
ioNet, which aggregates over 500,000 blood glucose readings
and more than 140,000 insulin administration events for nearly
9,600 ICU patients from the MIMIC-III database [1]. Each
entry corresponds to either a glucose reading or an insulin
intervention, with accompanying timestamps and contextual
metadata.

The curated data includes patient identifiers, ICU admission
information, glucose test types and results, insulin administra-
tion types and dosage. For our study, we focus on the following
key variables:

1) TIMER: Timestamp of the event—either the START-
TIME of an insulin entry or the GLCTIMER of a glu-
cose measurement. We use TIMER to chronologically
order events within an admission.

2) EVENT: The insulin administration type (subcutaneous
bolus, intravenous bolus, or infusion). In our environ-
ment, insulin events are treated as proxies for potential
hyperglycemic episodes.

3) GLC: Blood glucose value in mg/dL, used to update the
latent glucose state when a measurement is observed.

4) GLCSOURCE: The method of glucose measurement
(fingerstick vs. laboratory analyzer), which influences
the reliability of observations.

To construct a sequential decision-making environment, we
convert each patient’s event stream into a discretized time
series with 15-minute time steps. At each step, we aggregate
all events occurring within the corresponding window. Glucose
measurement events directly update the observed glucose value
and associated statistics in the state, while insulin entries
serve as signals that alarm a glucose measurement may be
needed. This assumption is motivated by the fact that insulin
entries in the ICU are typically administered in response to
elevated glucose levels, making them a reasonable proxy for
unobserved hyperglycemic states.

IV. METHODS

A. State Representation and Reward Function

We formulate the problem of blood glucose monitoring for
ICU patients as a partially observable, sequential decision
making process, where every fixed timeframe (15 minutes)
a choice must be made to administer some blood glucose
test or not. The true patient glycemic state is only observable
through noisy, sparse measurements taken via finger pricks
or laboratory analyses at irregular intervals. We instead ap-
proximate our belief state using information about the last
observed measurement, summary statistics of all previous
measurements, and information about the time since the last
measurement. We treat this belief state feature vector as though
it was the Markov state for our decision making policies. The
state space is comprised of an §-dimensional feature vector
with the following features:

1) Most recent glucose measurement

2) Mean glucose over observation window

3) Standard deviation of glucose

4) Minimum glucose in window

5) Maximum glucose in window

6) Rate of glucose change per hour

7) Fraction of time spent in ideal glucose range (70-180
mg/dL)

8) Time since last measurement



We finalized the feature vector by experimenting with how
adding and removing state features impacted the performance
of the learned policies relative to the base heuristics. Incor-
porating additional features derived from the Curated Data
for Describing Blood Glucose Management in the Intensive
Care Unit dataset (including “time since last insulin dosage”,
“last insulin dosage amount”, and “insulin type”) worsened the
performance of the learned policies. Moreover, removing state
feature vectors also resulted in worsened performance, giving
us justification for our current state feature vector formulation.

The action space has 3 choices: do nothing, take a finger-
prick, or take a laboratory analysis (each with different associ-
ated costs). Transitions are derived retrospectively purely from
historical data based on how monitoring decisions were made
by clinicians. We evaluate our policies also based on historical
trajectories, simply capturing the reward for different policies
when evaluated on historic trajectories since we cannot collect
online rollouts for our policies.

We design the reward function to balance clinical tradeoffs
between measurement costs, information value, and patient
health. The reward function contains several distinct terms
which are summed to provide a total reward. First, there are
default costs ¢(a) for different actions that represent the actual
clinical resource costs of performing any measurements. Sec-
ond, we introduce a reward term r{** that penalizes missing
measurements before historic interventions. The reasoning for
this decision is that medical interventions/bolus injections are
a proxy for hyperglycemic state in a patient. These hyper-
glycemic states should be observed via some measurement in
a short window by performing some measurements close to
the historically observed intervention. Specifically, we let the
reward at time ¢ be given by ry:

re = c(ag) + ry

0 a=wait
—1 a = fingerprick
—3 a = lab analysis

—20, L. > 90,
0, otherwise.

Here, L; is the time since the last measurement in minutes.
The -20 penalty is applied only when an insulin intervention
occurs more than 90 minutes after the last measurement,
reflecting a missed opportunity to detect a worsening glycemic
state before treatment. We experimented with other terms that
intuitively would reward measurements, because without terms
that reward penalties, the obviously optimal policy would be
the simple heuristic of always waiting. We tried adding an
uncertainty penalty term, which would penalize waiting too
long between measurements. However, we found that our
learned policies performed better when we used only the two
reward components above.

B. Policies

Given this representation of the problem, we constructed
several different policies: some hard-coded heuristic baselines,
as well as a policy learned using Q-Learning (DQN), and a
simple policy derived via behavioral cloning of the historical
actions. First, we implement a policy 7y, which determin-
istically performs no measurement in all states. Second, we
implement a policy which deterministically measures every
3 hours, Teshold- We selected a 3-hour interval because it
aligns with a realistic monitoring frequency for ICU workflows
and provides a simple, interpretable heuristic baseline. Third,
we implement a heuristic one-step look ahead policy, which
estimates the value of information gained by any measurement
by adding a term that scales linearly with the time since the last
measurement as well as a term that scales with the standard
deviation of previous glucose measurements in the patient and
choosing the action with the highest —cost + VOI.

Then, to learn a policy directly from historic patient tra-
jectories, we implement a Deep Q-Learning (DQN) approach
that treats the belief-state feature vector described above as
the Markov state s;. Because the data is fully offline, no
environment interaction occurs during training; instead, we
sample transitions (s, a;, 7, S¢+1) from the historical dataset.
We parameterize the action-value function with a neural net-
work Qg (s, a) and train it to satisfy the Bellman equation for
the optimal Q-function:

Q*(s¢,ar) = ry + ymax Q" (sp41,a’).
a’eA

The neural network is 2 layer MLP with hidden dimensions
128. Following the standard DQN training recipe, we main-
tain a separate target network Q" whose parameters are
periodically updated from €. For each sampled transition, we

construct the target
te t
Yt =Tt + 7y max dirge (St+17 al)a
a’€eA
and minimize the loss

L(O) = (Qo(se,ar) —ye)”.

We also implement a simple behavioral cloning algorithm,
which bypasses our occasionally finicky reward function and
directly trains against the historical actions taken. This treats
the historical measurements as a ground truth or expert
demonstrations, which is a reasonable assumption since those
measurements were performed by trained clinical staff. We
implement this as a simple supervised learning classification
problem, to which we apply a simple 2 layer MLP with
hidden dimensions 64 and 32. This produces logits for each
action in the action space, which we convert into a probability
distribution over actions using the softmax function. During
evaluation, we sample from this resulting probability distribu-
tion.

V. RESULTS

We measure the performance of our policies by checking
how they perform when the actions selected by the policy



TABLE I
POLICY EVALUATION STATISTICS

Policy Measurement Interventions w/

Rate | Associated Mea-
surement 1

Always Wait 0.00 0.000

Fingerprick Every 3h  7.97 0.458

Myopic VOI 77.25 0.851

QLearner 21.75 0.703

BCPolicy 7.48 0.462

Historical 8.47 0.901
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Fig. 1. Tradeoff between policy accuracy and measurement rate.

are evaluated on the stream of historic events for patients.
We include two metrics: the average number of measurements
taken per day by a policy and the number of treatment
interventions that have an associated measurement before the
intervention (as defined above). We report this as an accuracy
rate out of all total treatments. These two metrics capture the
clinical tradeoff between measurement cost and observation
of hyperglycemic states for patients. The ideal policy would
minimize the measurement rate (conserving clinical resources)
while maximizing the number of treatments that have an
associated measurement (encouraging knowledge of patient
glycemic levels during critical moments). The performance of
each policy we tested is reported in table I.

We see that our learned policies are only marginally better
than even a simple logical policy which measures once every
3 hours (roughly matching the measurement rate of historical
measurements). This reflects the difficulty of the problem and
the sparsity of the signal in the dataset. It is difficult to recover
high accuracy without measuring too much. The Q Learning
policy measured more than twice as much as the historical rate
while recovering only 80% of the accuracy of the historical
policy. This highlights the difficulty of predicting the patients’

glycemic states, especially given a very sparse signal of
previous measurements. The policy that directly learns from
the historical measurement actions performs very similarly
to the simple policy of regularly scheduled measurements. It
is likely that more clinical information is needed to inform
measurement actions beyond simple heuristics which are not
available in the dataset we are using.

All of the measurement actions taken by the learned and
heuristic policies are finger pricks actions because they have
a lower cost. Our state space models does not capture the
differing levels of uncertainty between measurements via
finger prick versus more sophisticated lab analyses. Different
methods of modeling uncertainty in measurements would help
differentiate measurement actions.

It is also worth noting that the historical policy has a
significant correlation between measurements and interven-
tions as interventions are usually informed by a measurement.
Therefore, there might be other periods of hyperglycemia in
patients that are not captured in the data.

VI. DISCUSSION

A. Implications of Our MDP Formulation

In this paper, we developed a framework for sequential
glucose monitoring allocation in the ICU and evaluated several
policies, including heuristics, behavioral cloning, and Deep
Q-Learning. Our work highlights both the potential and lim-
itations of applying reinforcement learning and MDP-based
methods in clinical decision-making under partial observabil-
ity.

For this project, a notable challenge arose from the spar-
sity of ground-truth glucose measurements in real-world ICU
datasets. Negative consequences from a lack of glucose
measurements only occur when the patient’s true glycemic
state is poor. However, the majority of the true glucose
trajectory is unobserved due to infrequent point-of-care test-
ing. Consequently, penalties computed using the last-known
measurements may not accurately reflect the patient’s actual
physiological state, particularly when the time elapsed since
the last measurement is long. This limitation can lead to
learned policies that underestimate the risk of hyperglycemia
or overestimate the safety of waiting.

The underlying clinical process is fundamentally a POMDP:
the true glucose state is only intermittently observed through
sparse measurements. In this work, however, we approximate
it as a belief-state MDP by constructing a feature-based
state representation that encodes the history of measurements,
recent trends, and time elapsed since the last observation, and
then treating this feature vector as Markov. Within this MDP
formulation, we handcraft the reward signal. The action of
waiting is assigned a reward of 0, since deferring a glucose
check incurs no direct operational cost. Point-of-care finger-
prick testing is modeled with a small negative reward of (—1)
to represent its modest but non-negligible time and resource
burden. In contrast, sending a sample for a full laboratory
analysis is assigned a larger penalty of (—3), reflecting its



substantially higher cost. These numerical values are hand-
specified and would benefit from tuning by a clinician with
more domain expertise in ICU treatment.

Using the defined reward function, the Q-network implicitly
learns to trade off between measurement costs and glycemic
safety through trial-and-error on historical trajectories. This
approach favors practical scalability and data efficiency over
the exact optimality provided by POMDP solvers, enabling
application to large retrospective datasets. In effect, the net-
work learns policies that capture temporal patterns in glucose
dynamics without requiring an explicit model of the under-
lying physiological processes. However, this method does
not recover Pareto optimal performance. This aligns with
other lines of work in glucose monitoring which suggest
that clinically informed policies outperform purely data driven
policies [20].

B. Adjustments to Model Complexity

Contrary to our initial beliefs, we discovered that our
relatively low-dimensional features were sufficient to recover
meaningful policies. When we attempted to add additional
features beyond the 8 we currently include (e.g. time since
last insulin dosage, most recent insulin dose amount, insulin
type), we noticed that the performance of the learned policies
actually worsened, likely due to the model overfitting sparse
insulin data — the vast majority of time steps have no insulin
dosing.

VII. CONCLUSION

Our findings suggest that feature-based approximations and
offline RL are able to produce clinically sensible policies for
glucose monitoring allocation, even under sparse and noisy
observations. The results highlight that compact state represen-
tations and relatively simple function approximations can still
capture the essential clinical trade-offs involved in weighing
risk, uncertainty, and measurement burden. Overall, this study
demonstrates the feasibility of applying RL-based approaches
to the problem of ICU glucose monitoring allocation and
provides insight into the trade-offs between model complexity,
observability, and real-world operational constraints. However,
our results also suggest that a more clinically informed model
would likely yield better results as our learned policies are
only marginally better than simple heuristic approaches.

VIII. FUTURE WORK

Based on the results of our project, there are many potential
avenues for future development:

o The project would benefit from a clinically informed
transition model, which would enable collecting policy
rollouts. This environment would enable us to use a
variety of different methods that improve Q-Learning.
For example, we could use DAgger. There is support in
the literature for using clinically informed models, which
are more interpretable than purely data-driven models,
especially in regimes with low-data or sparse signal [20].

o Going forward, we could instead represent the problem
of glucose measurement allocation as a POMDP by
better estimating the temporal dynamics of blood glucose
changes using a transformer-based sequence model. This
would enable the agent to maintain a more informative
belief state over the patient’s underlying physiology. De-
spite sparse observations, the agent would be empowered
to select measurement times based on predicted future
risk rather than solely on currently observed values.
In order to accomplish this goal, we could train our
new transformer-based sequence model on data from
continuous glucose monitors, as shown in [21].

o The framework that we described in this paper could be
extended beyond glucose monitoring to other analogous
resource-sensitive measurement allocation tasks, like ad-
ministering labs, vitals, and clinical imaging.

IX. CONTRIBUTIONS

The contribution by each teammate to the project were as

follows:

o Anthony helped formulate the MDP model; wrote the
dataset preprocessing and model representation; wrote
the Q-Learning code; wrote the Behavior Cloning code;
experimented with different reward functions; ran experi-
ments with Q Learning and behavioral cloning including
the final training runs; wrote the methods and results
sections of the report.

o Justin helped formulate the MDP model and reward
function; wrote baseline heuristics policies and simulation
environment; wrote the abstract, introduction, discussion,
conclusion, and references for the final paper; researched
various articles/methods and datasets that could be used
for modeling the allocation of point-of-care glucose mon-
itoring devices.

« Jiayu helped formulate the problem statement and MDP
model; conducted a literature review; ran some experi-
mentation with Q Learning policies.

Our team spent an additional 30 hours on the project conduct-
ing a more thorough literature review, reading about additional
methods for offline learning like imitation learning and imple-
menting behavioral cloning and running more experiments.
When finalizing our state feature vector, we ran multiple
ablation studies to test how removing state features altered
model performance. After completing the main project, we
explored partial observability by brainstorming the design of
transformer-based predictors of glucose dynamics.

REFERENCES

[1] Robles Arévalo, A., Mateo-Collado, R., & Celi, L. A. (2021). Cu-
rated Data for Describing Blood Glucose Management in the Inten-
sive Care Unit (version 1.0.1). PhysioNet. RRID : SCRy07345.
https://doi.org/10.13026/517s-2q57

[2] D. Juneja, D. Deepak, and P. Nasa, “What, why and how to monitor
blood glucose in critically ill patients,” World J. Diabetes, vol. 14, no.
S, pp. 528-538, May 2023, doi: 10.4239/wjd.v14.i5.528.

[3] R. Sreedharan, A. Martini, G. Das, N. Aftab, S. Khanna, and K. Ruetzler,
“Clinical challenges of glycemic control in the intensive care unit: A
narrative review,” World J. Clin. Cases, vol. 10, no. 31, pp. 11260-
11272, Nov. 2022, doi: 10.12998/wjcc.v10.i31.11260.



[4]

[5]

[6]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds., New
York: Academic, 1963, pp. 271-350.

K.-L. Yau et al., “Reinforcement learning models and algorithms for
diabetes management,” IEEE Access, pp. 1-1, 2023, doi: 10.1109/AC-
CESS.2023.3259425.

H. Emerson, M. Guy, and R. McConville, “Offline reinforcement
learning for safer blood glucose control in people with type 1
diabetes,” J. Biomed. Inform., vol. 142, p. 104376, 2023, doi:
10.1016/].jb1.2023.104376.

L. H. Dicker et al., “Continuous blood glucose monitoring: A Bayes-
hidden Markov approach,” Statistica Sinica, vol. 23, no. 4, pp. 1595-
1627, 2013. [Online]. Available: http://www.jstor.org/stable/24310814
S. Wang and W. Gu, “An improved strategy for blood glucose control
using multi-step deep reinforcement learning,” in Proc. 16th Int. Conf.
Bioinformatics and Biomedical Technology (ICBBT), New York, NY,
USA: ACM, 2024, pp. 196-203, doi: 10.1145/3674658.3674689.

Y. Zhang, H. Wu, B. T. Denton et al., “Probabilistic sensitivity analysis
on Markov models with uncertain transition probabilities: An application
in evaluating treatment decisions for type 2 diabetes,” Health Care
Manag. Sci., vol. 22, pp. 34-52, 2019, doi: 10.1007/s10729-017-9420-8.
J. O. Ferstad, E. B. Fox, D. Scheinker, and R. Johari, “Learning
explainable treatment policies with clinician-informed representations:
A practical approach,” arXiv preprint arXiv:2411.17570, 2024. [Online].
Available: https://arxiv.org/abs/2411.17570

O. Alagoz, H. Hsu, A. J. Schaefer, and M. S. Roberts, “A review of
decision models in chronic disease screening and treatment,” Operations
Research, vol. 58, no. 5, pp. 949-964, 2010.

J. Yu and D. Bertsekas, “Partially observable Markov decision processes
for disease progression and treatment decisions,” in Proc. IEEE EMBS,
2004, pp. 300-303.

I. Thapa, E. Rao, and W. Cai, “Dynamic glucose monitoring with
partially observable Markov decision processes,” Stanford Univ., Tech.
Rep., 2019, AA228/CS238 Course Project.

C. Liu and A. Nanduri, “Optimization of insulin dosing in diabetic pa-
tients with POMDPs,” Stanford Univ., Tech. Rep., 2019, AA228/CS238
Course Project.

Z. Yang et al, “An improved strategy for blood glucose
control  using  multi-step  deep  reinforcement learning,”
arXiv  preprint arXiv:2403.07566, 2024. [Online]. Available:
https://arxiv.org/abs/2403.07566

S. Jaszczur, F. Johansson, and M. Wattenberg, “On the challenges
of using reinforcement learning in precision drug dosing: Delay and
prolongedness of action effects,” arXiv preprint arXiv:2301.00512, 2023.
[Online]. Available: https://arxiv.org/abs/2301.00512

D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Advances in Neural Information Processing Systems (NeurIPS), 2010.
W. S. Lovejoy, “A survey of algorithmic methods for partially observed
Markov decision processes,” Annals of Operations Research, vol. 28,
no. 1, pp. 47-66, 1991.

M. Kochenderfer et al., “The pomdp package in R,” The R Journal,
2024.

J. Ferstad et al., “Learning Explainable Treatment Policies with
Clinician-Informed Representations: A Practical Approach,” Proceed-
ings of Machine Learning for Health (ML4H), 2024

H. Emerson, M.Guy, R. McConville, “Offline reinforcement learning for
safer blood glucose control in people with type 1 diabetes,” Journal of
Biomedical Informatics, Volume 142, 104376, ISSN 1532-0464, 2023.
[Online]. Available: https://doi.org/10.1016/j.jbi.2023.104376.



